Second Harmonic Super-resolution Microscopy for Quantification of mRNA at Single Copy Sensitivity
نویسندگان
چکیده
Cell-specific information on the quantity and localization of key mRNAs at single copy sensitivity in single cells is critical for evaluating basic cellular process, disease risk, and efficacy of therapy. Quantification of overexpressed mRNAs beyond the diffraction limit is constrained by the optical property of the probes and microscopy techniques. In this report, nanosized barium titanium oxide (BaTiO3, BTO) crystals were utilized as probes for mRNA quantification by a second harmonic super-resolution microscopy (SHaSM). The SHaSM was able to detect a single copy of the human epidermal growth factor receptor 2 (Her2) mRNA at a resolution of 55.6 nm with the ability to resolve multiple mRNA copies in a diffraction-limited spot. Her2 mRNA per cell was counted in SK-BR-3, MCF-7, and HeLa cell lines as 595±79.1, 38.9±8.26, and 1.5±2.8, respectively. Our single-cell quantification results were validated with the fluorescence in situ hybridization studies and quantitative PCR, showing better specificity and selectivity over current single-molecule approaches for transcript detection. The SHaSM is expected to have an upper limit of resolving ∼10(4) transcripts in a single cell with the ability to monitor intracellular transcriptional dynamics at video rate. The developed approach has strong potential in clinical research and in the early diagnosis of life-threatening diseases such as cancer.
منابع مشابه
Quantitative mRNA detection with advanced nonlinear microscopy
Liu, Jing Ph.D., Purdue University, May 2015. Quantitative mRNA Detection with Advanced Nonlinear Microscopy. Major Professor: Joseph M.K. Irudayaraj. Cell-specific information on quantity and localization of key mRNA transcripts in single-cell level are critical to the assessment of cancer risk, therapy efficacy, and effective prevention strategies. While current techniques are not capable to ...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملTurning single cells into microarrays by super-resolution barcoding.
In this review, we discuss a strategy to bring genomics and proteomics into single cells by super-resolution microscopy. The basis for this new approach are the following: given the 10 nm resolution of a super-resolution microscope and a typical cell with a size of (10 µm)(3), individual cells contain effectively 10(9) super-resolution pixels or bits of information. Most eukaryotic cells have 1...
متن کاملPseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کاملPALM and STORM: what hides beyond the Rayleigh limit?
Super-resolution imaging allows the imaging of fluorescently labeled probes at a resolution of just tens of nanometers, surpassing classic light microscopy by at least one order of magnitude. Recent advances such as the development of photo-switchable fluorophores, high-sensitivity microscopes and single particle localization algorithms make super-resolution imaging rapidly accessible to the wi...
متن کامل